
graphic analysis, where hypothesized global-
ly synchronous sea level cycles form the
basis of the popular paradigm of sequence
stratigraphy.
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Distribution of Thiobacillus ferrooxidans and
Leptospirillum ferrooxidans: Implications for

Generation of Acid Mine Drainage
Matthew O. Schrenk, Katrina J. Edwards,* Robert M. Goodman,

Robert J. Hamers, Jillian F. Banfield

Although Thiobacillus ferrooxidans and Leptospirillum ferrooxidans are widely consid-
ered to be the microorganisms that control the rate of generation of acid mine drainage,
little is known about their natural distribution and abundance. Fluorescence in situ
hybridization studies showed that at Iron Mountain, California, T. ferrooxidans occurs in
peripheral slime-based communities (at pH over 1.3 and temperature under 30°C) but
not in important subsurface acid-forming environments (pH 0.3 to 0.7, temperature 30°
to 50°C). Leptospirillum ferrooxidans is abundant in slimes and as a planktonic organism
in environments with lower pH. Thiobacillus ferrooxidans affects the precipitation of ferric
iron solids but plays a limited role in acid generation, and neither species controls direct
catalysis at low pH at this site.

A fundamental component of the sulfur
geochemical cycle is the release of sulfate
into solution through oxidative dissolution
of sulfide minerals. Because sulfides are at

least a minor component of most rocks, this
process is almost ubiquitous in chemical
weathering. Weathering of sulfide-rich rocks
with low neutralization capacity forms sul-
furic acid–rich solutions that can carry high
metal loads. When ore bodies are exposed
by mining, this results in an environmental
condition known as acid mine drainage
(AMD).

Pyrite (FeS2) is the most abundant sul-
fide mineral in Earth’s crust. Exposure of
pyrite surfaces to oxygen and water results
in the formation of sulfuric acid. Ferric iron,
an abundant alternative electron acceptor
in many AMD solutions, interacts effective-
ly with surface sulfur species (1) and pro-
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motes pyrite dissolution by the following
reaction: FeS2 1 14 Fe31 1 8 H2O 3 15
Fe21 1 2 SO4

2- 1 16 H1 (2). Microorgan-
isms greatly accelerate the rate of oxidation
of Fe21 to Fe31, so that the rate of pyrite
dissolution is generally controlled by micro-
bial activity (2–4).

Numerous studies have measured and
compared the abiotic, biotic, and Fe31-in-
duced rates of pyrite dissolution (2). Almost
all experimental work has used Thiobacillus
ferrooxidans, which is generally assumed to
be the most important species accelerating
the dissolution of metal sulfide (2). T. fer-
rooxidans is considered typical of AMD sys-
tems because it can be readily cultured from
these environments. The importance of the
iron-oxidizing species Leptospirillum ferrooxi-
dans is now also widely accepted (5), and
this species can outcompete T. ferrooxidans
under certain conditions (6, 7). However,
few studies have evaluated the potential
geochemical impact of L. ferrooxidans in
natural low-pH environments, and the dis-
tribution and abundance of these species
have not been quantified.

We used molecular methods based on
small-subunit ribosomal RNA (SSU rRNA)
sequences (8) without prior cultivation (9)
to study the role of microorganisms in an
AMD environment at Iron Mountain, Cal-
ifornia, and to analyze the abundance and
distribution of T. ferrooxidans and L. fer-
rooxidans as a function of geochemical and
physical conditions. To determine the ab-
solute contribution of these two bacterial
species to the total microbial population,
we evaluated the proportion of all cells
in the domains Bacteria, Eukarya, and
Archaea.

Iron Mountain is an in inoperative mine
containing tens of kilometers of under-
ground tunnels running through a sulfide
ore body, as well as several runoff streams
peripheral to the ore body. Pyrite-dominat-
ed sediments and solutions draining from
the sulfide deposit were collected from the

Richmond mine in January 1997. A few
samples of seepage from tailings piles and
storage tanks for AMD runoff from outside
the mine (pH 2 to 4, temperature 10° to
25°C) were also collected and fixed for
subsequent microbiological analysis (10).

The geochemical analyses from all sites
fall into two clusters. Solutions with pH 1.5
to 2.5, temperature 17° to 30°C, and con-
ductivity ,30 mS/cm were confined to re-
gions of the main tunnel and occasional
pools. Solutions with pH 0.3 to 1.0, tem-
perature 33° to 50°C, and conductivity
.68 mS/cm were typical of most sites in
contact with the ore body. Dissolved oxy-
gen contents were higher in the higher
temperature, lower pH regions, at ;1.2 mg/
liter at ;20°C to ;5.2 mg/liter. This is
probably due to higher mixing that occurs
at spillways.

Total cell counts were determined by
DNA staining with 49, 6-diamidino-2-phe-
nylindole (DAPI) (7) (Fig. 1). Cell num-
bers for rRNA probe–labeled samples rela-
tive to total cells were determined by dual
counting of samples with differently labeled
probes. Totals for the three domains should
sum to the total detected with DAPI. In
general, the total number of cells detected
with rRNA probes was lower than that
detected with DAPI, probably because some
cells were dead or inactive.

The A and C drifts are two of four
horizontal tunnels that diverge from the
horizontal Richmond entrance tunnel
about 450 m into the mine. Solutions drain-
ing from, or collecting in, the A drift had
temperatures between 42° and 45°C and
pH values of 0.5 to 0.7. In the C drift, the
temperature was 47° to 48°C and the pH
was 0.4 to 0.6. Samples from all environ-
ments were found to contain abundant mi-
crobial life. In the A and C drifts, typical
direct cell counts were 2.5 3 105/ml in
solutions, 1.6 3 109/ml in slime streamers,
and 4.2 3 106/ml in pyrite sediment.

Cells in sediment, water, or slime that

hybridized with the T. ferrooxidans probe
were completely absent. The probe effec-
tively hybridized with cultured T. ferrooxi-
dans cells [American Type Culture Collec-
tion (ATCC) number 19859], both in so-
lution and on pyrite surfaces. The conclu-
sion that T. ferrooxidans is not important in
environments typified by the A and C drifts
is supported by the absence of this species in
enrichment cultures that used samples from
the A drift as inoculum in standard T.
ferrooxidans media (4). We found that in all
cases, bacteria were the predominant form
of microbial life (at least 75% of cells).
Eukarya were minor constituents of many
assemblages but ranged up to 25% of cells in
some slimes. Archaea were a minor compo-
nent in solutions.

The abundance of L. ferrooxidans in the
A and C drifts varied with microenviron-
ment (Fig. 1). This species accounted for
almost the entire bacterial component of
some slimes and was present in flowing and
stagnant water (Fig. 2). Leptospirillum fer-
rooxidans has been cultured as a planktonic
organism from these sites (11). Although
only a few of the bacteria in sediments are
L. ferrooxidans, this species occurs in rela-
tively high numbers associated with, but
unattached to, the sediments (;105 cells/
ml). Enrichment cultures also contained
bacillus-shaped cells that colonized pyrite
surfaces and hybridized with the bacterial
probe (Fig. 3) but not with the L. ferrooxi-
dans or T. ferrooxidans probe. We have
shown that the acidophilic mesothermo-
philic bacteria in these cultures are
chemolithotrophic, metabolize ferrous
iron, and accelerate pyrite dissolution
rates (;10–5 mmol of Fe per cell per day at
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Fig. 1. Results from fluorescence
in situ hybridization analysis (total
cell counts determined by DNA
staining with DAPI). The term
“flow” refers to moving water,
“pool” to standing water, “spill” to
water actively flowing over a bar-
rier in the Richmond ore body,
“slime” to slime streamers on and
in pools of standing water, and
“sed.” to sediment consisting of
pyrite accumulations on the floor
of the drift. The term “matte” re-
fers to a named body of standing
water in a vertical shaft close to
the mine entrance. Error bars were calculated from six to eight repetitions per sample (23) and ranged
from 62 to 15%, but were most commonly 65 to 7%. Sediment numbers refer to cells attached to pyrite
surfaces and in associated pore fluids. All Eukarya in these samples were in the solution fraction.

Fig. 2. Probe results for slime from the A drift. (A)
Slime stained with DAPI. (B) Slime stained with
LC206 (probe for L. ferrooxidans). The filaments
on the right-hand side are Eukarya. Scale bar, 5
mm.
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pH 0.7 and temperature 42°C) (11).
Bacteria were also the predominant form

of microbial life (,,5% Archaea or Eu-
karya) in less extreme environments along
the horizontal tunnel into the mine
(;20°C, pH 1.3 to 2.4; Fig. 1). However, in
contrast to the situation in the pH , 1.0
environments, T. ferrooxidans was an im-
portant constituent and accounted for
about one-third of the total population of
pH . 1.0 slime communities. In addition,
we successfully cultured T. ferrooxidans from
these sites with the same standard culture
medium used to test for this species in the A
drift.

Because T. ferrooxidans is (i) not direct-
ly associated with the main ore body
where primary oxidative dissolution is tak-
ing place and (ii) is a common inhabitant
only of the more accessible, cooler, higher
pH regions, we infer that the impact of
this species on pyrite oxidation reactions
in the mine is restricted. Thiobacillus
ferrooxidans may be essentially an oppor-
tunist, deriving metabolic energy from
dissolved Fe21 but contributing little to
acid generation at this site. This conclu-
sion is consistent with the observation
that conditions associated with the ore
body are below the normal pH and above
the normal temperature range for T. fer-
rooxidans (12). Thiobacillus ferrooxidans
still has an important geochemical impact
at this site because the oxidation of Fe21

leads to precipitation of ferric iron solids,
reducing the metal load in solutions. This
potentially beneficial role differs consider-
ably from the negative role often assigned
to this species.

Leptospirillum ferrooxidans is extant over
most of the range of conditions sampled.
Although its distribution suggests that it
plays an important ecological role in the
microbial community by catalyzing sulfide
mineral dissolution, its relative importance
in the generation of AMD is not yet known.
Our evidence suggests that this species is a

dominant planktonic microorganism associ-
ated with the ore body, where conditions
are generally .40°C and pH is 0.7 to 1.0.
Leptospirillum ferrooxidans may be the spe-
cies primarily responsible for catalysis of
sulfide oxidation by aqueous ferric iron.

We have sampled the Iron Mountain
site throughout the year. Our results show
that substantial fluctuations in geochemical
conditions are accompanied by variability
in microbial population statistics. However,
the key conclusions relating to the distribu-
tion of T. ferrooxidans and L. ferrooxidans
are valid (13).

Although solutions draining most AMD
sites have pHs of 2 to 4 (2), conditions may
typically be more extreme close to reaction
sites, as we have observed at Iron Moun-
tain. Sulfuric acid–forming reactions are
quite exothermic (14), and pHs in proxim-
ity to pyrite surfaces are likely much lower
than those measured in bulk solution (2).
Consequently, the organisms that are most
important to sulfide dissolution may fre-
quently encounter conditions similar to
those found in the tunnels associated with
the Iron Mountain ore body. Current mod-
els based on T. ferrooxidans should be re-
evaluated to reflect the involvement of dif-
ferent species promoting sulfide weathering
by different mechanisms and at different
rates.
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Materials with Negative Compressibilities
in One or More Dimensions

Ray H. Baughman,* Sven Stafström, Changxing Cui,
Socrates O. Dantas

Rare crystal phases that expand in one or more dimensions when hydrostatically com-
pressed are identified and shown to have negative Poisson’s ratios. Some of these
crystals (i) decrease volume and expand in two dimensions when stretched in a particular
direction and (ii) increase surface area when hydrostatically compressed. Possible mech-
anisms for achieving such negative linear and area compressibilities are described for
single crystals and composites, and sensor applications are proposed. Materials with
these properties may be used to fabricate porous solids that either expand in all direc-
tions when hydrostatically compressed with a penetrating fluid or behave as if they are
incompressible.

Most materials contract in all directions
when hydrostatic pressure (P) is applied—
that is, the volume compressibility (2dV/
VdP), area compressibilities (2dA/AdP),
and linear compressibilities (2dL/LdP) are
all positive. Materials are thermodynami-
cally forbidden to have negative volume
compressibilities. A negative area compress-
ibility was initially reported for a trigonal
phase of arsenic (1), but this result disagrees
with later measurements (2). However,
there are rare reports of crystals having
negative linear compressibilities: lantha-
num niobate (3), cesium dihydrogen phos-
phate (4), an orthorhombic high-pressure
paratellurite (TeO2) phase (5), and the iso-
morphous trigonal Se and Te phases (6, 7).

A solid increases density when stretched
along an axis of negative linear compressibil-
ity, so it is equivalent either to say that a
solid has the property of being stretch den-
sified or that it has a negative linear com-
pressibility. If we denote the elastic compli-

ance coefficients for arbitrary orthogonal
axes as Sij9, then S119 1 S129 1 S139 is the
linear compressibility in the x9-axis direction
and S119 1 S219 1 S319 is the corresponding
coefficient for the fractional volume change
produced by a uniaxial stress in the x9-axis
direction. The elastic constant matrix is
symmetric (8), so that Sij9 5 Sji9, and there-
fore these coefficients for pressure-induced
linear dimension change and stretch-in-
duced volume change are equal.

By using well-known equations (8) for
linear compressibility as a function of elastic
compliances (Sij), it is easily seen that both
the minimum and maximum of linear com-
pressibility occur in crystal-axis directions for
orthorhombic or higher symmetry phases.
Whereas the existence of only positive linear
compressibilities constrains the magnitude of
any individual linear compressibility to be
less than the bulk compressibility, this con-
straint disappears if any linear compressibil-
ity is negative. We will use experimental
data to identify phases where a positive lin-
ear compressibility exceeds the bulk com-
pressibility, so the area compressibility
(which is the difference between the bulk
and the linear compressibility) is negative for
a plane perpendicular to the direction of this
positive compressibility. This implies that
there are negative linear compressibilities for

two perpendicular directions within this
plane. By choosing a plane with a negative
area compressibility as the predominant crys-
tal face, a crystal can be obtained whose total
surface area increases with increasing hydro-
static pressure.

We searched for evidence of stretch-den-
sified phases, using the elastic constant ten-
sors that have been experimentally deter-
mined for about 500 noncubic crystal phases
(7). Only about 13 of the 500 investigated
compositions are stretch densified (Table 1).
Other than the tetragonal mercurous halide
phases and the trigonal chalcogen phases,
there are no convincing examples of stretch
densification in the elastic-constant tabula-
tions for about 270 different hexagonal, tet-
ragonal, and trigonal phases (7). Out of 145
tabulated orthorhombic phases (7), only
cadmium formate, calcium formate, cesium
biphthalate, m-dihydroxybenzene, 3-methyl
4-nitropyridine 1-oxide, and tris-sarcosine
calcium chloride provide data that are clear-
ly consistent with stretch densification. No
stretch-densified triclinic phases were iden-
tified, and 70 investigated monoclinic phas-
es provide three likely examples of stretch-
densified phases: ethylene diamine tartrate,
cesium dihydrogen phosphate, and lantha-
num niobate.

Each of the stretch-densified crystal
phases in Table 1 provides both positive
and negative values for the Poisson’s ratio,
which is the ratio of a lateral contraction to
a longitudinal elongation produced by a
tensile stress. In fact, Se, the two tetragonal
phases, and all three monoclinic phases
both increase density and expand in one
lateral direction when stretched along a
particular direction. However, few crystals
with a negative Poisson’s ratio have a neg-
ative linear compressibility. Equally inter-
esting, a negative area compressibility re-
sults for the reported elastic constant tensor
(3, 7) for monoclinic cesium dihydrogen
phosphate and lanthanum niobate, and pos-
sibly for orthorhombic cadmium formate.

To enable the design of materials with
negative linear compressibilites, we identi-
fied several basic structural types that lead to
this property. Mechanical and molecular
models for hinged structures can be con-
structed (Fig. 1) in which stretch densifica-
tion results from a wine-rack–like deforma-
tion mode, like those for proposed polydi-
acetylene carbon phases (9). Molecular me-
chanics calculations suggest (Fig. 1C) (10)
that ferroelasticity (and associated shape
memory behavior) should occur in combina-
tion with negative linear compressibilities
for particular hinged structures. Both prop-
erties are observed for Hg2Br2, Hg2I2, lantha-
num niobate, and tris-sarcosine calcium
chloride (7). Munn has shown that a nega-
tive linear compressibility, combined with a
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